Design of a Bio-Inspired Wearable Exoskeleton for Applications in Robotics
نویسندگان
چکیده
In this paper we explain the methodology we adopted to design the kinematics structure of a multi-contact point haptic interface. We based our concept on the analysis of the human arm anatomy and kinematics with the intend to synthesize a system that will be able to interface with the human limb in a very natural way. We proposed a simplified kinematic model of the human arm using a notation coming from the robotics field. To find out the best kinematics architecture we employed real movement data, measured from a human subject, and integrated them with the kinematic model of the exoskeleton. This allow us to test the system before its construction and to formalize specific requirements. We also implemented and tested a first passive version of
منابع مشابه
Robots and cyborgs: to be or to have a body?
Starting with service robotics and industrial robotics, this paper aims to suggest philosophical reflections about the relationship between body and machine, between man and technology in our contemporary world. From the massive use of the cell phone to the robots which apparently "feel" and show emotions like humans do. From the wearable exoskeleton to the prototype reproducing the artificial ...
متن کاملLocomotor Sub-functions for Control of Assistive Wearable Robots
A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legge...
متن کاملDesign and Modeling of an Upper Extremity Exoskeleton
This paper presents the design and modeling results of an upper extremity exoskeleton mounted on a wheel chair. This new device is dedicated to regular and efficient rehabilitation training for weak and injured people without the continuous presence of a therapist. The exoskeleton being a wearable robotic device attached to the human arm, the user provides information signals to the controller ...
متن کاملICRA 2011 Workshop on Biologically-inspired Actuation Active and Passive Devices for Tuning Impedance in Wearable Robotics
Wearable robots, i.e. active orthoses, exoskeletons, and mechatronic prostheses, represent a class of biomechatronic systems posing severe constraints in terms of safety and controllability. Additionally, whenever the worn system is required to establish a well-tuned dynamic interaction with the human body, in order to exploit emerging dynamical behaviours, the possibility of having modular joi...
متن کاملDesign and Development of Cable Driven Upper Limb Exoskeleton for Arm Rehabilitation
this paper describes the design and kinematic analysis of a 5 DOF upper limb powered robotic exoskeleton for rehabilitation of the patients who survived stroke and the elderly who do not have enough strength to move their limbs freely. It was observed that the existing upper extremity exoskeletons were bulky and heavy which made them limited to applications and the complexity of the system incr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009